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Abstract. In this paper we study &e quasiperiodic stmctures which can be derived 
from E8. 'This lattice, suitably oriented, leads (0 a .ID quasiaystal which has {3,3,5} 
synmelry. The 
high-dimensional lattice is 6rst foliated into successive shells surrounding a vertex. 'The 
shells are embedded into 70 S1 spheres. We then use the socalled Hopf fibration 
of S1 to gather families of E8 shell sites into S' fibres which mntain 24 sites (or 
a multiple of 24) tvhich are symmetrically disposed in S3. This has WO advantages: 
first, in the selection process, a whole fibre is either selected or Ejected, which reduces 
the mmputation; more imponantly, Ihe selection process for a fibre amounts to simple 
arithmetical criteria. ?he whole process leads to a shell-byshell analysis of the 4D 
quasicrystal, which can be brought onto a -ID algorithm similar to the Fibonacci chain 
mnstmction. We propoae an arithmetic formula which gives the number of points on 
the shells This 40 quasinystal has the interesting feature that it o n  be sliced into 
lower-dimensional quasicrystals, for example with icosahedral and tetrahedral symmetry 
in three dimensions. 

W develop a modified vemion of the cut and projection method. 

1. Introduction 

A standard method for generating quasiperiodic structures is the cut and projection 
algorithm (Duneau and Katz 1985, Kalugin et a/ 1985, Eiser 1985) which uses higher- 
dimensional lattices. For example, the 30 icosahedral, 20 fivefold and eight-fold 
quasiperiodic structures are obtained by mapping, respectively, from 60,  SD and 4D 
cubic lattices. An original case was derived by Elser and Sloane (1987), who consider 
the so called E8 lattice in eight dimensions. E8 is a non-primitive cubic lattice which 
k part of the root lattice series (Conway and Sloane 1988). The use of root lattices 
has been extended by Baake ef U! (1990) who considered lattices in the D series. In 
the context of non-crystalline structures we have shown (Sadoc and Mosseri 1988) 
that a modified version of the Elser and Sloane (1987) approach allows recovery 
of the hierarchical polytopes, which were initially introduced for amorphous solids 
description (Mosseri and Sadoc 1984). 

All these polytopes are derived, by decoration, from the {3,3,5} polytope which 
is a template for icosahedral close packed structures. The quasicrystal which is 
derived from E8 has [3,3,5] symmetry, so it could be a useful tool with which to 
progress the study of non-crystalline close packing. For this reason the quasiperiodic 
structure is studied in detail, hence developing a modified version of the cut and 
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projection method. The high-dimensional lattice is first foliated into the successive 
shells surrounding a vertex. The shells are embedded into 7~ S7 spheres. We then 
use the so-called Hopf fibration of S7 (section 3 and appendix B) to gather families 
of E8 shell sites into S3 fibres which contain 24 sites (or multiples of 24) which 
are symmetrically disposed in S3. This has two advantages: first, in the selection 
process, a whole fibre is either selected or rejected, which reduces the computation; 
more importantly, the selection process for a fibre amounts to simple arithmetical 
criteria. The whole process leads to a shell-by-shell analysis of a 4D quasicrystal 
(section 4), which can be brought onto a '&ID algorithm similar to the Fibonacci 
chain construction (section 5). A first step towards the determination of explicit 
coordinates for the qnasiclystal sites is given (section 6). This 4D quasicrystal has the 
interesting feature that it can be sliced into lower-dimensional quasicrystals (section 
7), for example with icosahedral and tetrahedral symmetry in threc dimensions and 
with order 5, 12 and 30 in two dimensions. 

J F Sadoc and R Mossen' 

2. The EJ3 lattice 

The E8 lattice provides the densest packing of hard spheres in eight dimensions. This 
results from its 'laminated' nature, which results in it sometimes being denoted as A,. 
The laminated lattices ,4i are the whole series which starts in two dimensions with thc 
triangular lattice. The latter provides the densest packing of circles in two dimensions. 
Then A, is generated by a suitable stacking of A, in the third dimension. A3 is the 
FCC lattice which also has the densest periodic packing. Stacking FCC lattices in four 
dimensions leads to A4, also denoted {3,3,4,3}, which is a honeycomb (Coxeter 
1973). And so on in higher dimensions, which eventually gives the E8 lattice. An 
interesting feature of the laminated lattices is their high-density packing fraction which 
may prove useful for deriving models for quasicrystalline metals. 

21. Descriplion of h e  lattice 

Consider a simple cubic cell in Rs endowed with the standard orthonormal frame c;. 
The E8 nodes inside this cell are first given by all the permutations of 

(2.1) 
and the above set translated by (:') 

Written this way E8 bears analogies with the FCc and {3,3,4,3) (where all even- 
dimensional faces are centred) and even with the diamond structure (two FCC 
translated by 4 along the body cube diagonal). The total numher of vertices in 
the cubic cell can be calculated as follow. The number of j-dimensional faces of an 
n-dimensional cube is 2'L-j (;) and each such face is shared by 2"-j cells. Hence 
in the present case half of the vertices are counted by summing ( 8 )  with j even, 
which amounts to 128. The second set (translated from the first set along the main 
diagonal) gives 128 new sites which adds up to 256 sites altogether. Note that this 
new set occupies the centres of half of the Zs smaller cubes of length 4 contained in 
the unit cube. This is similar to what occurs in the 3D diamond structure. 
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22. The @sf coordination shell 

The smallest distance between two nodes is d / 2 .  Around the origin these first 
neighbours are of the type (i, f , @ )  with all signs, which amounts to 112, and also 
nodes like (a ), with the appropriate signs, which gives 128 new neighbours. So the 
first coordination shell is a semi-regular polytope with 240 vertices, called the Gosset 
polytope (Coxeter 19n). It bears some analogies to the 3D cuboctahedron. Its m 
faces are 17280 simplices and 2160 cross polytopes (the latter being equivalent to the 
octahedron in higher dimension). All smaller dimensional faces are simplices. 

8 

2.3. The E8 lattice unit cell 

Among all possible unit cells (i.e. with one node at the origin and a set of translations 
which generates the lattice), we shall exhibit two which prove to be interesting. The 
first set of translation is e,, i = 1,. . . , 8  

el : ( f ,  &, o,o, O,O,O,O) 
e 2 :  (~,O,~,O,O,O,O,O) 

e3 : (0, f,;,0,0,0,0,0, 

e4 : (O,O, i , f ,o,o,o,o) 
(L 1 1 L 1 1  I l j  

($, o,o, 0, &,o,  070) 
e7 : ( 1 1 L - I I I 1  4 ’ 4 ’ 4 ’  4 ’ 4 ’ 4 ’ 4 . - 5 )  1 

eg : (0, i ,o ,o ,o ,  t>O,O) 

e 5 :  

e6 : 

4 3 4 ’ 4 ’ 4 ’ 4 ’ 4 ’ 4 ’ 5  

The first three vectors el, e2, e3 define a rhombus with ?r/3 angles as in the FCC unit 
cell. The fourth vector e4 is such that e4 1 el and makes a 71/3 angle with e, and 
eg. These first four vectors generate a {3,3,4,3} lattice in R4. The last four vectors 
generate a similar lattice. The second choice for the unit cell is f,, i = 1,. . . ,8: 

fl : (4, f,0,0,0,0,0,0) 

fi : ( t , O ,  ;,o,o,o,o, 0) 

f3 : (0,  ;, ;,o,o,o,o,o) 
(1 1 1 1 1 1 1 I) 

f5: (1 1 I-1 1 L 1 A) 

(1 1 I -1 1 - 1  1 1 
f6 : 4 ’ 4 ’ 4 ’  4 , 4 ’  a > a . 5 )  

(L I I -1 -1 1 I I 
f7 : 4 ’ 4 ’ 4 ’  4 ,  4 i 3 r 5 r 5 )  

( I L L - L L I  1 1  f8 : 4 , 4 7 4 3  4 9 4 , 4 3 - 5 , 4 )  

f 4  : 4 7 4 ’ 4 ’ 4 1  4 ’  4 ’ 4 ’ 4  

4 ’ 4 3 4 ’  4 3 4 > 4 ? Z V  4 

The eight vectors f i  point toward the eight vertices of a simplicial cell of the 
Gwset polytope. All angles at the origin of the cell are n/3; thus it is a generalization 
In eight dimensions of the FCC unit cell. 

(2.3) 
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24. A 4~ sublattice decomposition 
Similar to the description of a 3D lattice in terms of reticular w planes, an 8D lattice 
can be decomposed into n-dimensional sublattices, the translation vectors between 
subspaces defining a complementary (8n)-dimensional lattice. Here we describe one 
such decomposition with n = 4 the {3,3,4,3} reticular lattice (or A4) which is, for 
instance, generated by the first four vectors ei , i = 1, . . . ,4. In E8 the complementary 
lattice is also a {3,3,4,3}. This lattice was previously used in the quasicrystal context 
(Sadoc and Mosseri 1990). Its coordination shell is a {3,4,3} polytope (Coxeter 
1973), a famous regular self-dual figure witb 24 vertices and 24 octahedral cells. The 
{3,3,4,3} lattice can be viewed both as a facecentred and a body-centred lattice. 
Indeed it is generated by the simple 4D cubic translations if one decorates the 4D unit 
QU with the eight nodes 

J F Sadoc and R Mossen 

(O,O,O,O) (4, i , O , O )  (;A f,o, ( f , O , O ,  f ,  
(0,$,0,4) ( O , k , i , O )  (o,o,;,$) (I 2 7 2 t 2 3  '). z 

(2.4) 

So it is an even-face centred cubic lattice (F). The 3D subspace spanned by the three 
vectors in (24) whose fourth coordinate vanishes contains an FCC lattice, and so does 
the 3~ space defined by x4 = f .  When both lattices are mapped orthogonally (along 
x4), each node of one lattice falls onto the centre of an octahedral interstice of the 
other lattice. 

Finally, consider the four vectors 
( L  2 ' 2 ' 2 ' 2  1 1  L) (-1 2 ' 2 ' 2 '  1 i - L )  2 ( -L 2' -1 2 9 2 T 2  1 L) (L 2 '  -1 2 ' 2 '  1 A) 2 (2.5) 
which also form an orthonormal basis, and thus define a hypercubic cell. In order 
to generate all the lattice sites (or vectors) it is necessary to add the (O,O, 1,O) 
node which is the cell centre. Therefore the {3,3,4,3} lattice can be viewed as a 
body-centred hypercubic lattice (I). 

3. Hopf fibration of the E8 coordination polytope 

The 240 vertices of the Gosset polytope can be seen as being inscribed in a x) 
hypersphere S7. As will become clear below, it is interesting to split these 240 
vertices into ten equivalent subsets, each belonging to a 3D hypersphere S3 which 
does not intersect the nine others. This is nothing other than taking a discrete 
version of the Hopf fibration of S7 with fibres S3 and base S4. 

We shall use quaternions, the main properties of which are recalled in appendix 
A, and we follow the presentation by Manton (1987) of the discrete Hopf fibration, 
which is presented in appendix B. 

Let us take the T group elements defined in appendix A, rescaled so as to belong 
to a sphere S3 of radius $, forming a new set called T,: 

We define a second set Tz: 
T2 = { i ( f l k i ) , i ( k l  k j ) , 4 ( k l k k ) , i ( k ~ k j ) , i ( & ~ i  k ) , i ( i j k k ) ) .  (3.2) 
The set T, is obtained from left multiplication of TI by the quaternion 1 + i. %ken 
as points on S3 it forms a {3,4,3} dual to the TI one. Now it is easy to verify that 
the Gosset polytope NO vertices belong to the ten sets: 

TI = {zki,k4i,kfj,ifk,i(fl t &ti t fj + ik)}. (3.1) 

SI = (Tz,O) S, = (0,Tz) s3,4 = ( T I , ~ T I )  

%,6 = (T1,fiTl) s74 = (Ti,k.iTr) %,IO = (T,,*kTl). 
(3.3) 
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This notation should be interpreted as follows. When two numbers appear as 
subscripts, the first one (respectively Second one) refers to the sign plus (rcspectively 
minus) in the next term. Now such a term means that one takes pairs of equal 
quaternions in TI, the second one being subsequently multiplied on the left by the 
specified unit. The pair of quaternions ( q l ,  qz) finally refers to the point in R8. 

Now, looking to the ten sets Si and the definition of the Hopf map as given in 
appendix B, it is clear that the 24 vertices in each set give the same value Q = qiqT1 
and therefore belong to the same S3 fibre of the Hopf bundle. The ten Q values 
are ( m , O , & l , i i , f j , i f )  and the corresponding points on the base S4 are given by 
the permutations of ( i l , O , O , O , O ) ,  which form a cross polytope in RS. In each fibre, 
the 24 points form a {3,4,3} polytope. Note that we could proceed again, using the 
more familiar Hopf bundle of S3 with fibres S’ and base S2, and fibre each {3,4,3} 
with six great circles passing through four points each (Manton 1987). The six points 
on the base Sz again form a cross polytope (here an octahedron), which gives a nice 
symmetrical pattern for the whole system. 

In addition, each {3,4,3} fibre of the Gosset polytope generates a { 3,3,4,3} 4D 
sublattice of E8. There are ten such equivalent sublattices passing through the origin, 
labelled by the ten points on the base S4. Let us consider now the point P in the 
base S4 with coordinates +( l , l , l , l , l ) .  It is equidistant to live of the ten base 
space vertices of the Gosset polytope. P uniquely defines a 40 space E. Mapping 
the Gosset polytope onto E produces five {3,4,3} on the same spherical shell, the 
remaining five being on a smaller shell. Each set of five {3,4,3}  forms a {3,3,5) 
icosahedral polytope, and the map of the Gosset polytope onto E therefore leads 
to two concentric {3,3,5}. This is exactly what is given by Elser and Sloane (1987) 
in their generation of the icosahedral quasiclystal from EX So E, defined by P on 
S4, is the ‘physical space’. The ‘orthogonal space’ E‘ corresponds to the point P’, 
opposite to P on S4. 

In the following, be careful not to confuse the Hopf map (H-map) (from a S7 
shell in R8 onto a S4 basis) and the orthogonal map (0-map) from R8 onto the 
quasicrystal ‘physical space’ in R4 

4. Shell-by-shell construction of the quasicrystal 

4.1. Successive shells in E8 

We now consider vertices on successive shells around an E8 vertex. The number of 
vertices on the Nth shell is given by (Conway and Sloane 1988) 

V, = 240U)Cd3 (4.1) 
d l j  

where d runs through all integers dividing j .  mble 1 displays these values for the 
first shells. Note that the square radius of a shell is half the shell number. 

With a shell embedded in a 7~ sphere, the set of vertices on a shell can be 
split into subsets belonging to S3 fibres, as for the Gosset polytope. Each fibre H- 
maps onto a point on the base S4. With the H-map as defined in appendix B, it is 
interesting to consider two orientations of the E8 lattice. The first one, which we 
call the C (for ‘crystallographic’) orientation, coincides with the coordinates (22) or 
(2.3) already given. For the second one, the Q (for ‘quasicrystalline’) orientation, we 
rotate the above coordinates in such a way that the 4D plane which H-maps onto P 
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Table l. Number of v e R i m  on shells amund the origin 01 the E8 laltice. Ihe 6rsl shell 
is the Gowl polytope in eight dimensions. See (4.1). 

Square Number 01 vertices 
N radius 6 on a shell in E8 

1 1R 240 
2 1  2163 
3 3R 6720 
4 2  17 520 
5 5R 30 240 
6 3  60 480 
7 7/2 82 560 
8 4  140 100 
9 9R 181 680 

10 5 272 160 

(section 3) is now H-mapped onto the point ( I , O , O , O , O )  on S4. This is done by the 
following 2 x 2 quaternionic matrix .M acting on pairs of quaternions (points in P'): 

cosw -sinwp' 

where 
w = 2 1 cos-1 l / d  and p ' = f ( l + i + j + k ) .  . . 

Note that w and p' are related to P as follows. Let y be the stereographic map onto 
R4 of the point P (on S4). Then p = p'tanw. M acts on a pair ( q , ,  9') to give the 
pair (qf,9;). In terms of the cut and projection method, 9; is the coordinate in the 
perpendicular space E', while q; is the coordinate in the parallel ('physical') space 
E. 

4.2. The base of rhe fibration in the C orientation 

Let us consider the vertices on the N t h  shell surrounding the origin in E8. The 
radius T of this shell is r = m. We first show that, for this Nth shell in E8, the 
coordinates of the base points take the simple form 

Indeed, consider the first coordinate I" on the base. A point ( 91, 9*)  is H-mapped 
onto S4 such that 

I. ~ = y .  t / N  with U; E 2. (4.3) 

- - 
(4.4) 

- aM2Q = 9292 - 9191 = 24292 - 9191 
r2 N '  U -  

Since T' = q,ql + q2q2 it is easy to show that relation (4.3) is satisfied whenever 
4q2q2 is an integer. This is true, as can be seen by inspection of the E8 coordinates 
given in (2.1). The demonstration for the other xi follows from considerations of 
symmetry. The E8 point group coincides with that of the Gosset polytope. We have 
Seen that the H-map of the a s s e t  polytope gives a cross polytope on S4. Therefore 
the H-map of any E8 shell shares the cross polytope symmetry. In particular, this 
symmetry allows permutations of the coordinate axes. Since the base S4 has unit 
radius, it follows that 

It can be shown that any combination of ui satisfying (4.5) correspcnds to a fibre 
in the Nth shell of Es. This is not a trivial result, but is the consequence of the 

N Z  = U: + U: + U; + uf + v,'. (4.5) 
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elaborate solution of a more general number theory problem ( b u c k  and Metropolis 
1981 pp 138-71). This allows the number of base points (e.g. of S3 fibres) for each 
shell (see table 2) to be easily enumerated. Indead, for each shell N, let us multiply 
the coordinates on the base by N .  Thus the base points are sent onto a shell of 
radius N in the m Zs lattice (note that it has shell number N* in Z5). The number 
c of points on a shell in Z5 is given by Hardy (1920) and simplifies, when the radius 
is an integer N, to 

c ( N )  = CP(d (4.64 
q I N  

where q runs through all the divisors of N and 

where d are odd divisors of q and d < q.  
Table 2 Coordinates of points on the base (with all possible permutations) for Uie Len 
fimt shells. The number M chamcleflies the ‘upper’ stmm and is relaled by (4.86) U) 
the shell number N .  ’lltese coordinates llre wlulions of WO diophantine equalions (6.1) 
and a u l d  be obtained from the b u c k  and Metropolis iteralive method. 

I 1 (lO000) 
2 4 (l1110) 
3 5 (ZZIOO) 
4 8 (22220)(32111)  
5 11 (32222)  
6 12 (33330) (43311)  . .  
I 1.5 (44322) 
8 16 ( 4 4 4 4 0 ) ( 5 5 3 2 1 ) ( 6 3 3 3 1 ) ( 6 4 2 2 2 )  
9 19 (64432) 

10 22 (55543) 

4.3. The base of the fibration in the Q orienration 

Applying the matrix M to the E8 lattice brings it to what we have called the Q 
orientation. The structure of the fibration is conserved under this rigid motion, as 
can be easily verified by applying the map A I  (appendix B) to a rotated point. The 
mapped point on R4 only depends upon q l q l l ,  the invariant quantity associated with 
a fibre. This means that the base of the fibration in the Q orientation is simply a 
rotation of the base in the C orientation, such that the point &(l, 1 , 1 , 1 , 1 )  of the 
base S4 is brought onto the point ( l , O , O , O , O ) .  

Now the striking point is that, for each shell, the set of base points are gathered 
onto ‘horizontal’ S’ small spheres (defined by constant xu), numbered by tn and such 
that (append& C) 

xo = n / N &  (4.7) 
where n = 211~ ( N  even) or n = 27n + 1 (iV odd) n taking integer values between 
Af and - M ,  with 
M = 2 1 $ ( N d ) ]  (N even) or M = 2[f(N&+ l)J (N odd) (4.8a) 
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where Lz-J means the integer part of x. Simple arithmetic gives the following unique 
form to A4 

J F Sadoc and R Mosseri 

A4 = 2[Nr]  - N with r = j ( l +  &) the golden ratio. (4.86) 
Each 'horizontal' set corresponds to E8 vertices which are o-mapped onto a 

single shell in the parallel and perpendicular spaces E and E'. Let us call p and 
p' the corresponding shell radii. As said above, p (respectively p') is the norm of 
q; (respectively qi).  It is easy to establish the relations between p, p' and the xu 
coordinate on the base S4 of the fibration: 

(4.9) 2 -  1 2  1 +  12 - Lr2 P - p ( 4 P - (1- .U) 
and, since the E8 shell number N = 21.2, 

5 N  - nf i  
p'2 = 5N + n f i  

20 20 
p2 = (4.10) 

where n = 2m or n = 2m + 1 whenever N is even or odd. 
These shells in E and E' are polytopes sharing the [3,3,5] symmetry group. It 

can be a {3,3, 5 } ,  a {5,3,3} or any demrated version of these two polytopes. We now 
need to decide which shells are to be kept in order to generate the 4D quasicrystal. 

4.4. The acceptance domain in h e  perpendicular space 

In the cut and projection scheme, a point in the higherdimensional lattice is selected 
whenever its projection onto the perpendicular space E' falls inside the so called 
'acceptance domain' (AD). Here (see figure I), as in Elser and Sloane (1987), we 
first take as AD the mapping of the Voronoi domain of E8. It is the convex hull 
of {3,3,5) (with radius R, = a/Z) and a {5,3,3} (with radius R h  = d a / 3 ) ,  
where a = ( ( 5 +  2 ~ ) / 1 0 ) ' ~ z .  

For reasons of symmetry, whenever a point is selected, the whole fibre to which 
it belongs is also selected. Moreover, and except for the cases discussed below, the 
above 'horizontal' shells (made of fibres sharing the same xu value) are kept or 
immediately rejected. This statement is exact when the AD is a spherical S3 shell in 
E'. Here some care must be taken for shells whose radii fall in between R,  and 
R h .  For a given E8 shell, and according to equation (4.10). the smallest p' value 
occurs whenever n is maximum, n = M (equation (4.8)). It corresponds to 

p"= ( & / 1 0 ) ( N ~ -  IN.]) (4.1 1) 
which is always smaller than R L .  So, for a given E8 shell, whenever the smaller 
sheU o-mapped onto E' is a {3,3,5}, it is always selected. Otherwise it could be 
rejected. However a precise inspection (up to the 70th E8 shell) shows that, for each 
E8 shell, there is always a small shell in E' (which means the largest shell in the 
physical space E) which is selected. The difficult cases occur when N is a Fibonacci 
number, for which p' comes close to R, or R h .  

the discussion we can decide to take, as the AD, the S3 
sphere whose radius 7 5/10 is in between R, and R L .  This radius is such that, for 
each E8 shell, exactly one small shell in E' is selected. The overall symmetry of the 
selected points in E (the [3,3,5] symmetry) is unchanged. The only difference might 
be some shells added or substracted compared with the above Voronoi mapped AD, 
although this was not found up to the 20th sheU (which already amounts to a large 
cluster). 

In order to simpl' 
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E8 and ShCIIs in E8 

. 
0 .  

1197 

M 

O 

.M 

.MSnSM 

Q o r e  1. This is a schematic drawing of the method choose a shell in F.8; describe it 
using fibration; select all fibres corresponding to the slrata M mapping on R4 gives a 
shell of the quasictystal. 

5. The 2D-1D aspect of the shell-byshell construction 

There are two characteristic features of the 4D quasicrystal which are related to the 
2D-1D construction of a Fibonacci quasiperiodic chain: 

(i) all the shells which contain a common subset of points, up to rescaling, have 
their radius in one-to-one correspondence with the abscissa of points in a Fibonacci 
chain. 

(ii) if we consider all the shells, whatever their type is, their squared radii also 
form a Fibonacci chain. 

In order to explain the former property, let us first consider {3,3,5} shells in 
the 4D quasicrystal. The first shell in E8 (the Gosset polytope) projects onto two 
concentric {3,3,5} in R4, scaled by a factor 7. Call A, (respectively A,) the star of 
120 vectors in E which point to the vertices of the smallest (respectively the largest) 
{3,3,5). A, generates the whole module obtained by mapping E.8. Note that this set 
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is not minimal. 
Consider two vertices, one on each such polytope, which are equivalent under 

the T scaling. They define two vectors in R4, U, and u2. When lifted into E8 
these two vectors give two orthogonal vectors. Indeed, they belong to two completely 
orthogonal 4-planes characterized by two opposed points on the base S4 of the Hopf 
fibration. These two orthogonal vectors in E8 span a sub-lattice in E8, which is a 
square lattice, embedded in a 2-plane U. The physical space E intersects Il along 
a straight line L containing u1 and u2. E8 points belonging to II and selected by 
the cut and projection algorithm could be directly selected by the standard 2D-ID 
algorithm in II. These points generate a Fibonacci chain in L. Consequently the 
radii of the successive {3,3,5} shells follow this Fibonacci sequence. 

The discussion proceeds along similar lines as for the other types of shells in 
the 4D quasicrystal. Indeed, consider, for a given type of shell, the one of smaller 
radius, and select a vector joining the origin to one of its vertex This vector can be 
written as a linear combination of vectors in A,. The same linear combination, but 
with the corresponding vectors in 4, defines a new vector scaled by 7. As in the 
above discussion, these two vectors are mapped from two orthogonal vectors in E8, 
which again span a square sub-lattice in E8, embedded in a 2-plane II‘. For the same 
reason, and because the AD size in this square lattice is in the module of (1, r ) ,  a 
Fibonacci sequence of the given typc of shell will be selected. 

The other ZD-ID interesting aspect of the 4D quasicrystal concerns the whole 
sequence of shells, whatever their type. The surprising result is that, when plotted 
against their square radius, they display a Fibonacci sequence. The shells’ square 
radius in the quasicrystal space E and in the orthogonal spaceE‘ read as 

J F Sadoc and R Mossen 

p2 = ( & / I o ) ( N T - I  + ~ ~ 7 1 )  

p’2 = (&/10)(N~ - ~ N T ] ) .  

( 5 4  

( 5 4  
From these relations one recovers without difficulty that the shells’ square radii 

p2 are ordered like a Fibonacci chain. Figure 2 shows this property. The vertical 
axis corresponds to the shell number N and the horizontal axis to the number n 
associated with different ‘horizontal strata’ on the base S4 of the fibration and which 
is used to label the different shells in R4 obtained from a single shell in E8. Each 
point ( N , n )  in this figure corresponds to a shell in R4. As In[ < N&, the 
whole module, obtained by mapping all the E8 lattice, corresponds to all the points 
inside the sector ( n  = - N 6 ,  n = N 6 ) .  The selected shells are those which are 
represented by points between the two straight lines R = N d  and n = N &  - 2. 
This is obtained when the AD is spherical with a radius (6 /10)1 /2 .  Recall that the 
choice of a spherical AD is equivalent to what is obtained using the Voronoi cell as 
AD: one shell in E8 leads to only one shell in R4. 

So we again find a construction similar to the 2D-1D construction. But here, 
all types of shells are concerned, and it is their square radius which follows a 
quasiperiodic order. 

6. Toward explicit coordinates for the quasicrystal 

6.1. The shells on the base of rhe fibration 

The first step for a complete understanding of the quasicrystal shells is a 
comprehensive description of the points on the basis of the fibration (each such 
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Figure 2. Polytopes are represented by symbols 
which are plotted on points with coordinates 
( N , n ) .  This figure summarizes mble 5. The 
poinls, representing polytopes, are inside WO lints 
representing equation n = iNJS. The selected 
shells correspond to points (N, M) which are the 
closest points to the line n = NJ5.  Hence they 
are inside the strip defined by the lwo parallel lines 
N J 5  and N J 5 - 2  This displays the 2WtD aspect 
of the shell square radius distribution (51). 

point corresponding to an S3 fibre in R8). A quasicrystal shell in R4 is built from 
the union of 0-mapped fibres, which are such that their H-mapped image belongs to 
the same S3 small-sphere of the S4 base. As explained above, points on the base can 
also be mapped onto points in the Z5 lattice. So the selected fibres are given by the 
intersection of a spherical shell in Zs with the reticular (l,l,l,l,l) 4-plane. Such a 
4-plane contains an A4 lattice (Conway and Sloane 1988), and the problem is then to 
enumerate the successive shells in A4 There is no explicit formula describing these 
shells, but we can use an iterative method devised by b u c k  and Metropolis (1981). 

With the notation used in section 5, the square radius of the shell in A4 is 
N Z  - n2/5. Whether this shell is centred on an A4 vertex depends upon the value of 
n[5], where [5] denotes the modulo 5 operation. So we have the following coupled 
diophantine equations 

Cut=" and U: = N 2  (6.1) 
i 4 4  k U . 4  

where M (the 'strata' number) is given by (4.8b). 
algorithm can be summarized as follows. 

The b u c k  and Metropolis 

Define RZ = 5 N Z  - M Z  and x = - M [ 5 ] .  
Define two integers amin = [R/21 and a,, = l2RJ (here r.1 is the first integer 
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larger than z). 
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Find all integers a E [amin,am,l such that a = - x [ 5 ] .  
Now suppose that the multiplet { v i )  is ordered in increasing values. Then we 

have 

The remaining values {vl, u2, y ,  v4] are again subject to coupled diophantine 
equations of the type (6.1) and the algorithm can be used again (but with the number 
4 replacing 5). This is easily implemented on a computer, and the first values are 
given in table 2. Once a multiplet is obtained, new ones are immediately derived 
by permutations. So the number of fibres on a ‘strata’ is given by the number of 
different solutions to (6.1) multiplied by the corresponding number of permutations. 

Another interesting property concerns the quantity RZ. RZ characterizes a given 
type of polytopal shell (e.g. all the {3,3,5} correspond to R2 = 4, the {5,3,3} to 
R2 = 16,. . .). This is true for all the shells in the quasiclystal. This point is developed 
further in section 6.3. 

6.2 The corresponding shells in E8 

For reasons of symmetry, the fibres whose coordinates are equivalent, up to a 
permutation, contain the same set of E8 vertices. In most cases it is a {3,4,3) 
polytope (with 24 vertices), but it is sometimes a decorated version of the latter. 

Let us first consider the case where the number of points on the base S4 is 
10CqIN q3 (which is a particular case of formula (4.6)) and suppose that there are 
exactly 24 vertices on each fibre. We then recover the known value 240CqlN q3 
(formula (4.1)) for the number of vertices in a E8 shell. So the cases where a fibre 
contains more than 24 vertices correspond to the corrections to the 3 term in formula 
(4.6b). We can rewrite (4.6) in the following way: 

vu = ! ( M  -a). (6.2) 

c ( N ) = l o ( x ? - E  d ( z ) 1 ) .  
dN qlN dlq 

d d , # q  

Since q / d  divides N, this can be put in  the following form 

(6.3) 

(6.4) 

This allows us to obtain the number of points on each fibre which is explicitly done 
for the ninth shell in table 3. The corresponding numbers for the first nine shells are 
given in table 4. 

6.3. The quasictystal shells 

A shell of the quasiclystal in R4 is obtained from all the fibres which are represented 
by points on the highest strata on the base (they are characterized by the two numbers 
N and M). Recall that N originally labels E8 shells. But, since for the highest strata 
on the base, M is unequivocally derived from N, then N also labels a shell in the 4D 
quasiclystal. These fibres 0-mapped onto R4 lead to a whole shell in the quasiclystal. 

If we are interested in the explicit coordinates of vertices in the quasiclystal the 
procedure comprises a lift of the coordinates on the base toward coordinates in E8. 
As all points on the same fibre give one point on the base, there is some uncertainty in 
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Table 3. With lhe example of the ninth shell. this table explains how the number of points 
on the base (written in standard figures) is relaled to lhe number of points on a fibre (in 
italic figures). The upper numbers are absolute values of the 'Slrata' numbers for all the 
strata obtained by mapping the ninth shell in E8 on R4. me number of poinls on the 
baseisgiven by(6.4)applied t o N = 9  c(l0) = 10[13x(l-3-9)+33x(l-3)+93]. 
There are lO(1  + 3]+ 9l) sets of 24 vertices. Some sets are individual fibres, some 
others are mbed in fibres containing more than 24 vertices. The 6rsl corresponds 10 
what appears in lhe line labelled no 9, the others in line shell no 1 and shell no 3. 
These two lines are obtained from the shell number 1 (because there is a correction 
d = 9 in the term in factor of 13, and because N f d  = 1) and from the shell number 
3 (d = 3 comation in 3] term, and N f d  = 3). In these lwo cases the n numbers are 
replaced by d .  n. and the number of points on the fibre have a faclor d .  

1 3 5 7 9 11 13 1.5 17 19 

Shell no 1 
x9 

Shell no 3 60 
x3 24 x 3 

5 
24 x 9 

5 
2 4 x 4 ~ 3  
30 
24 x 3 

30 
24 x 3 

Shell no 9 180120 120120 120240 180120 60120 12060 60120 603030 12030 60 
120 606060 606060 306060 303060 12060 6060 3060 
24 24 24 24 5 24 24 24 24 24 

24 

Total 24 96 on 60 24 24 96 on 30 24 24 96 on 30 24 24 
24 elre 24 x 21 on 5 24 else 

24 else 24 else 

this operation. But if one set of coordinates in El8 which would lead to the considered 
point on the base can be found, other points on the same shell can be obtained using 
point group symetries. Then, applying o-mapping leads to the coordinates for the 
quasicrystal. 

In summary we want to determine a set of coordinates in E8 written as two 
quaternions (q l ,qZ)  with q2& + qlgl = N/2. Call (uu,v1 ,u2 ,u3 ,v4)  the five 
coordinates of the H-mapped point ( q 1 , q 2 )  on the base uo = q2& - qlQ1. Call 
qv the quaternion ( u l ,  u2,v3,u4) .  We have the relation ( N  - uu)ql = q,q2. 

So the problem is to obtain two possible quaternions q, and q2 compatible both 
with this relation and with E8 coordinates for a given set of v i .  We do not have a 
general algorithm which gives explicit coordinates for all vertices of all the quasicrystal 
shells. 

Knowing the number of vertices on each shell of the quasicrystal is another good 
way to characterize this structure. We now discuss the question of obtaining this 
number from the shell number N. 

We now suppose that the number RZ = 5 N 2  - M 2  characterizes the type of 
shell in the quasicrystal. It is clear as a straightfonvard consequence of b u c k  and 
Metropolis (1981) that R2 characterizes the number of fibres leading to a quasicrystal 
shell, but the question of the number of vertices on each fibre remains. We have 
discussed the fact that some fibres have more than 24 vertices: this occurs for the 
selected one if there is an odd divisor p of N (see (6.4)) such that 

N = pN' and LNTJ = ~ [ N ' T J .  
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The second condition indicates that it is the selected fibre which has more than 24 
points. These two equations are written as a condition on the Rz number: 

Rn = 5N" - M n  and RZ = p2RR. 
So if a fibre has a multiple of 24 vertices for a given N ,  it occurs, with the same 
mechanism, for all N leading for the same R2 value characterizing a shell of the 
quasicrystal. 

In addition to the N number, we introduce two other related numbers N ,  = 
LNr] and N- = [ N / r ] .  The three numbers N - ,  N ,  N ,  are parts of (and define) 
a Lucas series ( N ,  = N f N - ) .  With this notation, 

showing that all R2 are multiples of 4. A Lucas number L ,  can be written using 
Fibonacci numbers F, (Schroeder 1984), L ,  = G,F,-l + Gz,F, where GI and Gz 
are integers. A particular case is the Fibonacci numbers obtatned with GI = 0 and 
G2 = 1. With a little arithmetic, using classical relations for Fibonacci numbers, we 
have, from N = G,F,_, + G2F,, the result R2 = 4(-G: + GZ - GiG2). All 
the Lucas numbers of the same series give L;  - L:-, - L,L,-, = R2/4 showing 
that all the N ,  with an index of the same parity in the same Lucas series defined 
by N - ,  N ,  N,, have the same R2, and so they correspond to similar shells in the 
quasicvstal. There is a restriction to this condition. If a shell number N = L, 
then 1N.l = L,,, must be true. This condition could exclude some of the first 
terms of the Lucas series. The simplest example of the relation between Lucas 
numbers and the type of shell is given by Fibonacci numbers: R2/4  = 1. All shells 
labelled by N = 1,2,5,13,. . . (which are even Fibonacci numbers FZnt1) are similar: 
they are {3,3,5} polytopes. Note here that we stated in section 5 that all {3,3,5} 
polytopes have their radii in correspondence with the abscissa of points in a Fibonacci 
quasiperiodic chain. N = Fanti corresponds to some of these points, but not all. It 
means that some shells which are not simply {3,3,5} polytopes contain a {3,3,5} 
polytope, as a subset, with the same orientation. 

The quasiperiodic chain corresponds to all shells which are, or which contain, 
similar {3,3,5} polytopes. The even Fibonacci numbers correspond to purely similar 
{3,3,5) polytopes. This remark extends to all types of shell. 

In order to study the possible values for R2/4, let us first suppose that GI and 
G, are coprimes. The first possible values are given in table 5 with the first N at 
which they occur. 

Another possibility is that GI = 0. In this case N = G2F2,,,, a multiple of a 
Fibonacci number, and R2/4 = G;. Consequently, all squares are possible values 
for R2/4. Finally, if G, and G, have a common divisor we get GI = pGI, and 
G, = pG" with Ri2/4 = G;' - GI,, G;G$ and R t 2 / 4  = p2Rt2/4 showing that 
R2/4  could be a product of possible different values of other R2/4.  nble 5 gives, 
for the first 34 shell, the value of R2/4, GI, G2 and the number x of vertices on the 
shell. It appears that the following relation is verified: 

R2 = 5 N 2 -  ( N -  f N,)2 or Rz = 4(NZ- NZ - N N - )  (6.5) 

x = 1 2 0 c q  1 ' ,  (6.6) 
9IQ I 

with Q = R2/4 and where q are all divisors of Q including 1 and Q which are in 
the set of possible values of R2/4 .  We have no proof of this relation but it has been 
tested up to the 37th shells, therefore we leave it as a conjecture. Its veracity would 
be highly valuable as it gives a very simple way to obtain the number of points on a 
shell in this 4D quasicrystal (nevertheless see Moody and Patera (1993)). 
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Table 5. The numbers R2 and R2/4, which are characleristic of shells, arc given for 
the first 34 shells. These numbcrs are oblaincd from (6.6). The [WO numbers G1 and 
GZ are the Lucar series generator such that N belongs lo a Lucar series. The relation 
(6.6) is exemplikd in lhe last lm,  columns. 

Number x 
of vertices Construction of this 

N R’ R2/4 GI Gr on shell numberIlM 
1 4 1  0 1 120 1 
2 4 1  0 1 120 1 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 

M 
16 
4 
36 
20 
64 
44 
16 
76 
44 
4 
80 
36 
124 
76 
20 
124 
64 
180 
116 
44 
176 
100 
16 
164 
76 
236 
144 
44 
220 
116 
4 

5 1 3 
4 0 2 
1 0 1 
9 0 3 
5 1 3 
16 0 4 

1 0 1 
20 2 6 
9 0 3 

2 1 31 
19 1 5 
5 1 3 
31 2 7 
16 0 4 

3 9 45 
29 4 9 
11 1 4 
44 4 10 
25 0 5 
4 2 4 
41 5 11 
19 1 5 
59 5 12 
36 0 6 
11 2 5 
55 6 13 

720 
600 
120 
12w 
120 
2520 
1440 
600 
2400 
1440 
1 20 
3600 
1200 
3840 
2400 
720 
3840 
2520 
7200 
3600 
1440 
7200 
31M 
600 
5040 
2400 
12w 
60W 
1440 
8640 
3600 
120 

1+5 
1+4 
1 
1+9 
1+5 
1+16+4 
1 + 1 1  
1 + 4  
1+19 
1 + 1 1  
1 
1 + 20+ 5 + 4 
1+9 
1 + 31 
1 + 19 
1+5 
1 + 31 
1+16+4 
1 t 45 i- 5+ 9 
1 t 29 
1 + 1 1  
1 + 44 + 4 + 11 
1+25+5 
1+4 
1 + 41 
1+19 
1 + 59 
1 + 36+9 + 4  . . .  
1 + 1 1  
1 + 55+ 11 + 5 
1 + 29 
1 

7. Quasicrystals of lower dimension 

It is possible to obtain a quasicrystal of dimension d 6 3 by sectionning the 4D 
quasicrystal with a &dimensional plane of high symmetry. 

An obvious example is the ID Fibonacci quasicrystal which appears along straight 
lines through the origin of the quasilattice in different directions of symmetly related 
to the [3,3,5] symmetry group. For instance consider one point on the {3,3,5} 
polytope which is the first shell of the 4D quasicrystal and the corresponding point of 
the second shell which is related by a 7 inflation. These two points aligned with the 
origin generate a 1D Fibonacci chain. 

7.1. 3D quasicrystals with icosahedral ymmeiry 

We now discuss some 3D examples. TWO-dimensional structures, except the one with 
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30-fold symmetry, are not presented here but they could be obtained by cutting into 
the 3D structures. 

We look for a 3D plane which must be invariant under a subgroup of the [3,3,q 
symmetry group, and we characterize its position relative to the first shell surrounding 
the origin in the 4D quasicrystal. This {3,3,5) polytope is embedded into an 5’ 
sphere which can be cut by the 3-plane along a Sz sphere. A particular orientation 
of the 3-plane is found and selected when it contains vertices of the polytope which 
form regular or semi-regular polyhedra on this Sz sphere. It is possible to describe the 
{3,3,5} polytope using concentric spherical SZshells in S3 (Coxeter 1973). Consider a 
vertex on a pole of S’: the first shell is an icosahedron, the second is a dodecahedron, 
the third a larger icosahedroq the fourth shell, in an equatorial position on a great 
sphere (S’) of S3, is an icosidodecahedron (figure 3). With this orientation of the 
polytope, all these shells share the icosahedral symmetry and then define a 3-plane 
containing a quasicrystal which has icosahedral symmetry. 

Figure 3. The first sbt shells of the quasicrystal are represented by concentric circles. 
These shells which are 4~ polytopes are oriented such that the 6rsl shell which is a 
{3,3,5} polytope has a vertex on a pole and an icosidodecahedron on the equatorial 
sphere: these two seu of points are represented on the firs1 circle by a horizontal diameter 
(schematizing the equatorial sphere) and a pole in the orthogonal direction. Wtth this 
orientation, the {3,3,5} could be decomposed, from the pole, into an icosahedron, a 
dodecahedron, a larger i-hedron, the icosidodecahedron and then symmetrically in the 
other hemisphere. These polyhedra are repmenled by horizontal segments terminated 
by two poinu on the circle. The other shells are also decomposed into polyhedra (all 
verlices of a polyhedron have the same fourth coordinate). Consider a 3D cut of the 
quasicrystal represented by a horizontal line. I t  contains a ID quasicrystal with icosahedral 
symmetry, but with a different structure depending on the fourth coordinale. 

First consider the 3-plane through the origin which cuts the {3,3,5} along an 
icosidodecahedron. All its shells are equatorial shells ( S 2 )  of successive (S’) shells 
cut in the 4~ quasicrystal. As in the 4~ counterpart their square radii form a Fibonacci 
sequence, and the radius of a given type of shell is found with quasiperiodic order. 
However, if a 4D shell has no point in the 3D plane it could mean that some shells 
are missing in the 3D quasicrystal. 

It is also possible to consider a 3-plane not through the origin but characterized by 
another type of polyhedral shell of the {3,3,5) polytope, for instance an icosahedron. 
In this case the 3D quasiclystal does not have a vertex at the origin; its first shell k an 
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icosahedron, the second shell a dodecahedron, the third shell an icosidodecahedron 
etc (as explained schematically in figurc 3). In this case, the square radii of the 
successive shells are not organized as a Fibonacci chain but equal rf + (where 
4 is in units of the first shell radius in the 4~ quasicrystal). So there are numerous 
possibilities for 3D quasicrystals with icosahedral symmey using different choices of 
3D planes, possibly with some thickness. 

7.2. 3 0  quasiciysIals wilh tetrahedral Symmetry 

The {3,3,5} polytope has other symmetry subgroups; an interesting example is the 
tetrahedral symmetry. Consider a {3,3,5} polytope oriented such that the centre of 
a cell is at a pole. Then the succesive shells are: a tetrahedron, another tetrahedron 
inflated by T ,  an octahedron, two shells with 12 vertices located on the edges of 
a cube (some faces are golden rectangles), another tetrahedron inflated by T~ and 
finally a cuboctahedron on the equatorial sphere. If we consider the 3D plane through 
the origin, containing this cuboctahedron, it contains a quasicrystal with a tetrahedral 
symmetry (and even maybe of octahedral symmey, this should be checked). Note 
that the first shell is the same as in an FCC close packed structure. 

7.3. A 2D quasicrystal with 30-fold Symnietty 
Fmally let us consider a particular case in two dimensions: a quasicrystal with 30-fold 
symmetry. It is known from group theory arguments that such point symmetry could 
be obtained by mapping from a lattice in eight dimensions. Indecd there are eight 
integers lower and coprime to 30. The E8 point group has a subgroup isomorphic 
to the [3,3,5] symmey group. The latter contains 30-fold ‘screw’ symmetry axes 
(Coxeter 1973). In the {3,3,5} polytope, the orbits under this symmey are screw 
polygons wrapped onto a torus embedded in R4. When mapped onto the two 
orthogonal symmetry planes, they appear as either a 30-fold regular polygon or a 
30/11 star polygon. Therefore, choosing one of these two planes as ‘physical space’, 
we can generate a 1D 30-fold quasicrystal. However, it is not a simple cut of the 4D 
quasicrystal. One needs, as in the usual cut and projection method, to select points 
located close to the physical space. More precisely, the AD in the orthogonal plane 
can be any polygon of finite radius, whose symmetry is a multiple of 30 (or even a 
circle as limit case). 
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Appendix A. Quaternions 

A quaternion q is given by 
4 = 4u + 4li + 4 2 j  t 43h 4u> 41,421 93 E !t (AI) 

with iz = j z  = @ = z ~ k  ” = -1 the latter ‘Hamilton’ relations deEning the 
multiplication rules which are noncommutative. Quaternions,which form a corpus 
H, can also be viewed as ordered pairs of complex numbers with the following rules 
for addition and multiplication: 

( s , t )  + (%U) = (s + U , l +  U) 

( s , . t ) ( U , U ) = ( S u - - 1 7 j i ) ) S U + f f L )  

q = qu - q,i - q2j - q3k.  

(4 
where s ,  U, U, 1 E C and C is the complex conjugate of U. The quaternion conjugate 
is defined as 
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Also the n o m  N,  is such that 
4 

N," = qlj = zq: 30. (A4) 
i= l  

There is another way in which q can be written as a scalar part S( q)  and a vector 
V ( d :  

4 = S(q) t V(q)  

S ( d  = i ( n +  4) V(q)  = i ( q -  0). (A61 

S(q) = nu V ( d  = nli  t ,,j + q3k (A.9 
with the relations 

A quaternion is said to be real if V, = 0 and pure imaginary if S, = 0. We shall 
also write K ( q )  to denote the component of V ( q )  along i. Let Q be the set of unit 
norm quaternions. It is a non-commutative group isomorphic to SU(2) and to S3 
(considered as a topological group). A quaternion in Q can be written 

where y is a pure imaginary quaternion. Remember that quaternion multiplication is 
not commutative so 

q = c o s a + y s i n c r  or q = e x p a y  ('47) 

exp(w)exp(Pz) = e x p ( w +  Pz)  (AS) 
only if y = Z .  

Of interest in the present work is the group of integral unit quaternions T 
sometimes called the Hurwitz group, or the binary tetrahedral group. It contains 
the following 24 elements 

T =  { ~ l , ~ ~ , * ~ , * ~ , ~ ( * l + ~ ~ + ~ ~ t ~ k ) }  (As) 
If one considers the group elements as points on the unit sphere S3, they form a 

{3,4,3} self-dual polytope. Note that the set of vertices of the {3,3,4,3) tesselation, 
taken as vectors, form a ring whose units are precisely the elements of T (du Val 
1964). Quaternions can also be used in eight dimensions, with points described as 
pairs of quaternions. 

Appendix B. The HopP map 

There are two well known Hopf fibrations of (high-dimensional) spheres by (lower- 
dimensional) spheres. The most famous is the fibration of S3 by great circles s' and 
base S2. It is non-trivial (S3 # S2 x SI). This fibration can be extended to the whole 
R4 as a bundle of 2-planes which only meet at the origin. The second fibration, that 
of S7 with fibres S3 and base S', is used in this paper in a discretized form. 

A point on the sphere S7 has its coordinates given by a pair of quaternions (q,, q2)  
subject to qlql + qZGz = 1. S7 can be fibred such that the quaternion Q = qlq;' 
is invariant on each fibre S3, and therefore uniquely specifies the fibre. Q can be 
any quaternion, including 03, which shows that the base space of the bundle is S4. 
The latter can be viewed as the inverse stereographic projection from R4 to S4. In 
this paper we shall define fibrations on S7 with different radii r, with an attempt to 
compare the results on the base S4 (or, equivalently, to compare the Q values). In 
doing so, one should take care of rescaling each S7 to a unit radius S7. In term of 
coordinates, the H-map can be witten as the composition of the map h,  from S7 
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to R4 (with M included) followed by an inverse stereographic projection from R4 to 
54:  

I F  Sadoc and R Mosseri 

h, : S7 + R4 

(B1) 
(41, QZ) + Q = 414;’ q r , q z E H  

h, : R4 -.+ S4 

Q - = ( ~ ~ 7 ~ 1 , 2 2 , 1 3 , 1 4 )  xi E R  
The coordinates on S4 read 

xu = cos2R 
I, = sin2nS(Q’) 

xz = sinZRK(Q’) 
xg = sin2R%(Q’) 

x4 =sinZRV,(Q’) 
where Q = N,Q‘, N,, = 1, R = tan-’ N Q / v .  Recall that the K ( q )  denote the 
component of V(q)  along i (appendix A). Note that, as for the first H-map, this 
fibration can be extended to the whole R8 as a bundle of 4-planes which only meet 
at the origin. Let us now come to the discretized Hopf fibrations. We have already 
used such concepts for the S3 Hopf fibration in the context of polytope models 
of amorphous solids (Nicolis er a1 1986, 1988). If we are interested only in the 
geometry of a discrete set on S7 (a polytope), we can restrict ourselves to a finite 
set of S3 fibres, each containing a discrete set of points. When the set on S7 is 
highly symmetrical, it is possible to choose the orientation of the discrete bundle so 
that each of the S3 fibre contains a symmetrical set, the base S4 also showing a 
symmetrical pattem. For example, as explicitly described by Manton (1987), the 240 
vertex Gosset polytope on S7 is fibred into ten discretized S3 with 24 vertices each 
(forming a {3,4,3} polytope, the base having ten points forming a cross polytope- 
see section 3). 

Appendix C 

Let us consider for each shell in E8 the corresponding unit radius S4 base. If it 
is in the Q orientation, the I,, coordinate for each fibre is just the scalar product 
of the corresponding vector in the C orientation with the vector 1/&(1,1,1, 1, l ) .  
Therefore, if the coordinates in the C orientation are { v , / N } ,  the new xu simply 
reads 

4 

xu = c v i / N & .  (C1) 
i d  

Since Cv: = N 2  and C u i  has the same parity as C v f ,  we recover equation 
(4.7). Going back to the representations of the S4 bases as shells with integer radii 
in Z5 (section 4.2), the above slicing of S4 into small S3 spheres amounts to take 
the intersections of the Zs shells with the successive reticular 4D lattices with Miller 
indices (l,l,l,l,l). The interspacing in this reticular family is I/&. Each 4-plane in 
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intersection is 2 1 6  which gives, once normalized, the value 2 I N 6  as expected 
from equation (4.7). 

In order that q, remains < 1, we have 
2m 2 m + 1  

< 1  N o d d  (C2) 
Or NJS N even N J S C 1  

which gives the A4 values of equation (4.8). The fact that m takes all possible values 
between -A4 and A4 is more subtle but can be proved ( b u c k  and Metropolis 1981 
pp 138-71). 

Let us just have a simple insight into this problem. We have 

We can prove first that, for each N and for each integer p < N, there is a set vi 
such that one of the vi equals p. Indeed, suppose that U,, = p. Then conditions (C3) 
would imply that 

i = l  

Since any number can be mitten as a sum of four squares (Hardy and Wright 1968). 
it is always possible to fulfil condition (a). Now change p into - p .  This decreases 
Cui by -2p .  So there are N sets ui (not necessarily different), such that new 
sets, with one ui = p , ( p  < N) of the opposite sign, can be generated which fulfil 
equations (a), but with the sum of the coordinates decreased by 2p. So we see how 
new values of m can he obtained, but this does not yet prove that all values of m 
are reached. 
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